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Faculté des Sciences. B.P. 20 El Jadida, Morocco (e-mail: laghdir@ucd.ac.ma); 3GERAD
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1. Introduction

In very recent years, the analysis and applications of D.C. mappings (differ-
ence of convex mappings) have been of considerable interest [11,18,27,31].
Generally, nonconvex mappings that arise in nonsmooth optimization are
often of this type. Recently, extensive work on the analysis and optimiza-
tion of D.C. mappings has been carried out [7,8,21]. However, much work
remains to be done.

Reverse convex optimization, that is, minimizing an extended real-val-
ued convex function subject to a reverse convex constraint, constitutes a
general framework for a large class of nonconvex optimization problems
including D.C. optimization (minimizing or maximizing a difference of two
extended real-valued convex functions), maximizing a convex function over
a convex set, and minimizing a convex function over a reverse convex set,
i.e., the complement of a convex subset of a convex set. This subject has
received increased attention in recent years mainly for numerical purposes
[13,28,30], duality theory in D.C. optimization [15,16,23] or from the point
of view of necessary and sufficient conditions for optimality with the use
of subdifferential calculus of convex analysis and regularising techniques [6,
10,11,19,20,29].

In this paper, we are concerned with the multiobjective optimization
problem
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(P )

{
Y+ −Minimize f (x)−g(x)

subject to : x ∈X \S

where X and Y are Banach spaces, f, g:X → Y are Y+-convex, proper
and lower semi-continuous mappings, S is a nonempty open convex sub-
set of X, and Y+ ⊂Y is a pointed, convex and closed cone with nonemp-
ty interior. Our approach consists of using a special scalarization function
introduced in optimization by Hiriart-Urruty [10] to detect necessary and
sufficient optimality conditions for (P ). Here, convex analysis theory plays
a crucial role in our investigation.

Applying Corollary 3.3 and Theorem 3.4, we deduce optimality condi-
tions for the special multiobjective optimization problem

R
p
+ −Minimize

(
f1 (x)

g1 (x)
, . . . ,

fp (x)

gp (x)

)

subject to : h (x) /∈−intZ+

where f1, . . . , fp, g1, . . . , gp:X→R are lower semicontinuous functions such
that

fi (x)�0 and gi (x)>0 for all i =1, . . . , p

Z+ is a nonempty closed convex cone and h is a Z+-convex mapping
defined from X into another Banach space Z.

The rest of the paper is written as follows : Section 2 contains basic defi-
nitions and preliminary material. Section 3 is devoted to main results (opti-
mality conditions). Section 4 discusses an application to vector fractional
mathematical programming with reverse convex constraints.

2. Preliminaries

Throughout this paper, X,Y,Zand W are Banach spaces whose topolog-
ical dual spaces are X∗, Y ∗,Z∗ and W ∗, respectively. Let Y+ ⊂ Y (respec-
tively Z+ ⊂ Z ) be a pointed

(
Y+ ∩ (−Y+)={0}), convex and closed

cones
(
λY+ ⊂Y+ for all λ�0

)
with nonempty interior introducing a par-

tial order in Y ( respctively in Z ) defined by

y1 �Y y2 ⇔y2 ∈y1 +Y+.

We adjoin to Y tow artificial elements +∞ and −∞ such that

−∞=− (+∞) , y1 −∞�Y y2 for all y1, y2 ∈Y.
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Moreover

y2 �Y y1 +∞=+∞ for all y1, y2 ∈Y ∪{+∞} .

The negative polar cone Y ◦ of Y+ is defined as

Y ◦ ={y∗ ∈Y ∗:
〈
y∗, y

〉
�0 for all y ∈Y+}

where 〈., .〉 is the dual pairs.
Since convexity plays an important role in the following investigations,

recall the concept of cone-convex mappings.
The mapping f :X → Y ∪ {+∞} is said to be Y+−convex if for every α ∈
[0,1] and x1, x2 ∈X

αf (x1)+ (1−α)f (x2)∈f (αx1 + (1−α)x2)+Y+.

DEFINITION 2.1. A mapping h:X → Y ∪ {+∞} is said to be Y +-D.C. if
there exists two Y+-convex mappings f and g such that

h (x)=f (x)−g (x) ∀x ∈X.

Let us recall the definition of the lower semicontinuity of a mapping. For
more details on this concept, we refer the interested reader to [4,22].

DEFINITION 2.2. [22] A mapping f :X → Y ∪ {+∞} is said to be lower
semicontinuous at x̄ ∈ X, if for any neighborhood V of zero and for any
b ∈ Y satisfying b �Y f (x̄), there exists a neighborhood U of x̄ in X such
that

f (U)⊂b+V + (Y+ ∪{+∞}).

DEFINITION 2.3. [24,32] Let f :X→Y ∪{+∞} be a Y+-convex mapping.
The vectorial subdifferential of f at x ∈domf is given by

∂vf (x)={T ∈L(X,Y ) :T (h)�Y f (x +h)−f (x)∀h∈X} .

REMARK 2.1. When f is a convex function, ∂vf (x) reduces to the well-
known subdifferential

∂f (x)= ∂A.Cf (x)={x∗ ∈X∗:f (x)−f (x̄)�
〈
x∗, x −x

〉
for all x ∈X

}
.
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REMARK 2.2. Let f :X → Y ∪ {+∞} be a Y +–convex mapping. If f is
also continuous at x, then

∂vf (x) =∅.

The next concept was introduced in [5] in finite dimension. We give it in
the infinite case.

DEFINITION 2.4. Let U be a nonempty subset of Y . A functional g:U →
R∪{+∞} is called Y+-increasing on U, if for each y0 ∈U

y ∈ (y0 +Y+)∩U implies g (y)�g (y0) .

In [14], and using the separation Hahn-Banach geometric theorem, B.
Lemaire set the following proposition which generalize both Gol’shtein’s
result [9] and Levin’s result [17]. He used, for a simple application
h:Y → R∪{+∞}, and another application which is Y+−increasing g:Y →
R∪{+∞}, the convention that

g ◦h (x)=g (h (x)) if h (x)∈dom (g) and g (+∞)=+∞.

Consequently, g ◦h is an application from X into R∪{+∞} and its effective
domain is given by

dom (g ◦h)=dom (h)∩h−1dom (g) .

PROPOSITION 2.1. [14] Let X and Y be two real Banach spaces. Consider
a mapping h from X into Y∪{+∞} and a function g from Y into R∪{+∞}.
If

(i) h is Y +−convex,
(ii) g is convex, Y+−increasing and continuous in some point of h (X).

Then

∂ (g ◦h) (x)= ∪
y∗∈∂g(h(x))

∂
(
y∗ ◦h

)
(x) .

In the sequel, we shall need the following result of [4]. Under the nonemp-
tiness of the set

{
x ∈X:h (x)∈−int Y+}, one has

∂ (δ−Y+ ◦h) (x̄)= ∪
y∗∈(−Y+)◦

〈y∗,h(x̄)〉=0

∂
(
y∗ ◦h

)
(x̄) (2.1)
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where the symbol 〈, 〉 denotes the bilinear pairing between Y and Y ∗, and
δS is the indicator function of S.

REMARK 2.3. Notice that the function y → δ−Y+ (y) is Y+−increasing.
Moreover for any Y+-convex mapping h:X → Y ∪ {+∞}, the composite
function δ−Y+ ◦h is also convex.

For a subset A of Y , we consider the function

�A (y)=
{

d (y,A) if y ∈Y\A
−d (y, Y\A) if y ∈A

where d (y,A)= inf {‖u−y‖ :u∈A}. This function was introduced by Hiri-
art-Urruty [10] (see also [12]), and used after by Ciligot-Travain [2], and
Amahroq and Taa [1].
The next proposition has been established by Hiriart-Urruty [10].

PROPOSITION 2.2. [10] Let A ⊂ Y be a pointed closed convex cone with
nonempty interior and A =Y . The function �A is convex, positively homoge-
neous, 1-Lipschitzian, decreasing on Y with respect to the order introduced by
S. Moreover (Y\A)={y ∈Y :�A (y)>0} , int (A)={y ∈Y :�A (y)<0} and the
boundary of A: bd (A)={y ∈Y :�A (y)=0}.

It is easy to verify the following lemma.

LEMMA 2.3. The function �: Y →R defined by

�(y)=�−int(Y+) (y)

is
(
Y+)-increasing on Y .

Let K be a closed convex subset of X. The normal cone N (K, x̄) to K at
x̄ is denoted by

N (K, x̄)={x∗ ∈X∗ : 0�
〈
x∗, x − x̄

〉
for all x ∈K

}
.

This cone can be also written as

N (K, x̄)= ∂δK (x̄)

where δK is the indicator function of K. Properties of the subdifferential
and the normal cone can be found in Rockafellar [25].

As a direct consequence of Proposition 2.2, one has the following result.
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PROPOSITION 2.4. [2] Let A⊂Y be a closed convex cone with a nonempty
interior. For all y ∈Y . one has

0 /∈ ∂�S (y) .

3. Optimality Conditions

We begin by giving necessary optimality condition for the optimization
problem

(P1) :
{

Y+ −Minimize f (x)−g (x)

subject to: x ∈C,

where f, g:X→Y ∪{+∞} are convex and lower semi-continuous mappings
and C a closed set.

The point x ∈ C is an efficient (respectively weak efficient) solution of
(P1) if (f −g) (x) is a Pareto (respectively weak Pareto ) minimal vector of
(f −g) (C).

For all the sequel, we assume that x ∈dom (f )∩dom (g).

LEMMA 3.1. If x̄ ∈ C is a weak minimal solution of (P1) with respect to
Y+, then for all T ∈ ∂vg (x̄) , x̄ solves the following scalar convex minimiza-
tion problem

(P2)

{
Minimize �−int(Y+) (f (x)−f (x̄)−T (x − x̄))

Subject to x ∈C.

Proof. Suppose the contrary. There exist x0 ∈C such that

�−int(Y+) (f (x0)−f (x̄)−T (x0 − x̄))<�−int(Y+) (0)=0.

This implies with Proposition 2.4 that

f (x0)−f (x̄)−T (x0 − x̄)∈−int
(
Y+) . (3.1)

By assumption, since T ∈ ∂vg (x̄), one has

〈T , x0 − x̄〉∈− (g (x0)−g (x̄))−Y+ (3.2)

From (3.1) , (3.2) and the fact that int
(
Y+)+Y+ ⊂ int

(
Y+), we obtain

f (x0)−g (x0)− (f (x)−g (x))∈−int
(
Y+)

which contradicts the fact that x̄ is a weak minimal solution of (P1).
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THEOREM 3.2. Assume that f is finite and continuous at x̄. If x̄ is a weak
minimal solution of (P1) then for all T ∈∂vg (x̄) there exist y∗ ∈ (−Y+)◦ \ {0}
such that

y∗ ◦T ∈ ∂
(
y∗ ◦f

)
(x)+Nc (C, x̄) .

Here, Nc (C, x) designes the Clarke normal cone to C at x .

Proof. Set H (.)=f (.)−f (x̄)−T (.− x̄).

• On the one hand, as �−int(Y+) is Y+-increasing and H is Y+-convex, then
�−int(Y+) ◦H is convex.

• On the second hand, as �−int(Y+) and H is continuous, then �−int(Y+) ◦H

is continuous.

Consequently, �−int(Y+) ◦ H is locally Lipschitzian. Denoting by k0 > 0 the
Lipschitz constant of �−int(Y+) ◦H , due to the Clarke penalization [3], there
exists k �k0 such that

0∈ ∂c
(
�−int(Y+) (H (.))+kdC

)
(x) .

Applying the sum rule [3], we obtain

0∈ ∂c
(
�−int(Y+) (H (.))

)
(x)+k∂cd (.,C) .

Since H is Y+-convex and �−int(Y+×Z+) (.) is convex continuous in 0 and
Y+-increasing, due to Proposition 2.1, there exist y∗ ∈ ∂�−int(Y+) (0) such
that

0∈ ∂
(
y∗ ◦H

)
(x)+Nc (C, x̄) .

Since �−int(Y+) (.) is a convex function and �−int(Y+) (0)=0 we have for all
y ∈Y

�−int(Y+) (y)�
〈
y∗, y

〉

and hence for all y ∈−Y+

〈
y∗, y

〉
��−int(Y+) (y)=−d

(
y,Y\− Int

(
Y+))�0.

That is y∗ ∈ (−Y+)◦. We conclude from Proposition 2.4 that y∗ =0.
Consequently, there exist y∗ ∈ (−Y+)◦ \ {0} satisfying

0∈ ∂
(
y∗ ◦f + 〈−y∗ ◦T , x − x̄

〉)
(x)+Nc (C, x̄) .
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Finally, for all T ∈ ∂vg (x̄), there exist y∗ ∈ (−Y+)◦ \ {0} such that

y∗ ◦T ∈ ∂
(
y∗ ◦f

)
(x)+Nc (C, x̄) . �

Let S be a nonempty open convex subset of X. Setting C: =X\S, one has
Theorem 3.3 which gives necessary optimality conditions for the reverse
optimization problem (P ).

THEOREM 3.3. Assume that f is finite and continuous at x̄ and that x̄ is
a weak minimal solution of (P ). Then, for all T ∈ ∂vg (x̄) there exist y∗ ∈(−Y+)◦ \ {0} such that

y∗ ◦T ∈ ∂
(
y∗ ◦f

)
(x)−N (S, x̄) .

Proof. Let T ∈∂vg (x̄). Applying Theorem 3.2, there exist y∗ ∈ (−Y+)◦ \ {0}
such that

y∗ ◦T ∈ ∂
(
y∗ ◦f

)
(x)+Nc (C, x̄) . (3.3)

Since S is an open convex subset, it is also epi-Lipschitzian at x̄ [26]. By a
result of Rockafellar [26], we conclude that

Nc (X \S, x̄)=−N (S, x̄) . (3.4)

Combining (3.3) and (3.4), we get the result.

REMARK 3.1. In Theorem 3.3, if x is an interior point of S, then for all
T ∈ ∂vg (x̄) there exist y∗ ∈ (−Y+)◦ \ {0} such that

y∗ ◦T ∈ ∂
(
y∗ ◦f

)
(x) .

THEOREM 3.4. Suppose that f, g:X → Y ∪ {+∞} are convex, proper and
lower semicontinuous, S is a nonempty open convex subset of X and x̄ ∈
domf ∩domg is a boundary point of S. If there exists y∗ ∈(−Y+)◦ \ {0} such
that

∂ε

(
y∗ ◦g

)
(x)+N (S, x̄)⊂ ∂ε

(
y∗ ◦f

)
(x) for all ε >0. (3.5)

Then x̄ is a weak minimal solution of (P1).
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Proof. As in Theorem 3.3,

Nc (X \S, x̄)=−N (S, x̄) .

Since ∂cd (.,X \S) (x̄)⊂Nc (X \S, x̄), inclusion (3.5) becomes

∂ε

(
y∗ ◦g

)
(x)− ∂cd (.,X \S) (x̄)⊂ ∂ε

(
y∗ ◦f

)
(x) , for all ε >0.

Consequently, for all ε >0

∂ε

(
y∗◦g

)
(x)+∂d (.,S)(x̄)−∂cd (.,X\S)(x̄)⊂∂ε

(
y∗◦f

)
(x)+∂d (.,S)(x̄).

As ∂�S (x̄)⊂ ∂d (., S) (x̄)− ∂cd (.,X \S) (x̄), we get

∂ε

(
y∗ ◦g

)
(x)+ ∂�S (x̄)⊂ ∂ε

(
y∗ ◦f

)
(x)+ ∂d (., S) (x̄) for all ε >0

which yields that

∂ε

(
y∗ ◦g

)
(x)+ ∂�S (x̄)⊂ ∂ε

(
y∗ ◦f +d (., S)

)
(x) for all ε >0. (3.6)

Since �S is convex continuous, one has

∂ε

(
y∗ ◦g +�S

)
(x)= ∂ε

(
y∗ ◦g

)
(x)+ ∂�S (x̄) for all ε >0. (3.7)

From (3.6) and (3.7), we obtain

∂ε

(
y∗ ◦g +�S

)
(x)⊂ ∂ε

(
y∗ ◦f +d (., S)

)
(x) for all ε >0.

By the classical Hiriart-Urruty [11] sufficient conditions, x̄ minimize the
function

y∗ ◦f (x)−y∗ ◦g (x)+d (x,X \S) .

We conclude that x̄ (a boundary point of S) is a minimum of the problem

Minimize y∗ ◦ (f (x)−g (x))

subject to : x ∈X \S.

Finally, due to y∗ ∈ (−Y+)◦ \ {0} , x̄ is a weak minimal solution of (P1).
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4. Application

In this section, we give an application to vector fractional mathematical
programming under reverse convex constraints. Let f1, . . . , fp, g1, . . . , gp:
X →R be convex and lower semicontinuous functions such that

fi (x)�0 and gi (x)>0 for all i =1, . . . , p.

We denote by φ the mapping defined as follows:

φ (x) :=
(

f1 (x)

g1 (x)
, . . . ,

fp (x)

gp (x)

)
.

We investigate the vector optimization problem

(
P ∗) :

{
R

p
+ −Minimize φ (x)

subject to : h (x) /∈−intZ+

where Z+ is a nonempty closed convex cone and h is a Z+-convex map-
ping defined from X into Z.

Setting S: = {x ∈X:h (x)∈−intZ+}, we assume that S = ∅ and X\S = ∅.
Then we have the following results.

LEMMA 4.1. Let x̄ be a feasible point of problem (P ∗).x̄ is a weak minimal
solution of (P ∗) if and only if x̄ is a weak minimal solution of the following
problem

(
P

′′)
:
{

R
p
+ −Minimize

(
f1 (x)−φ1 (x̄) g1 (x) , . . . , fp (x)−φp (x̄) gp (x)

)
subject to : x ∈X\S

where φi (x̄)= (fi (x̄))/(gi (x̄)).

Proof. Let x̄ be a weak minimal solution of (P ∗). If there exists x1 ∈ x̄ +
BX such that x1 ∈X\S and

(fi (x1)−φi (x̄) gi (x1))− (fi (x̄)−φi (x̄) gi (x̄))∈−Int
(
R

p
+
)
.

Since fi (x̄)−φi (x̄) gi (x̄)=0, one has

fi (x1)

gi (x1)
− fi (x̄)

gi (x̄)
∈−Int

(
R

p
+
)

which contradicts the fact that x̄ is a weak minimal solution of (P ∗). So
x̄ is a weak minimal solution of

(
P

′′)
. The converse implication can be

proved in a similar way. The proof is thus completed.
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LEMMA 4.2. Denoting by S̄ the closure in X of the subset S, we have

S̄ :={x ∈X:h (x)∈−Z+} .

Proof. From the continuity assumption of h and the fact that the cone
Y+ is closed

S̄ ⊂{x ∈X:h (x)∈−Z+} .

Conversely, let x ∈X such that h (x)∈−Z+. From the nonemptiness of S,
there exists a ∈X such that

h (a)∈−int
(
Z+) .

Setting xn := (1/n)a + (1− (1/n)) x for any n�1, the sequence (xn)n�1 con-
verges to x.

Since h is convex, one has

h (xn)∈ 1
n
h (a)+

(
1− 1

n

)
h (x)−Z+ ∈−int

(
Z+)−Z+ ⊂−int

(
Z+) ;

which means that xn ∈S. Then,
{
x ∈X:h (x)∈−Z+}⊂ S̄.

Finally, the desired equality holds.

THEOREM 4.3. Let x be a boundary point of S and assume that f is finite
and continuous at x̄. If x̄ is a weak minimal solution of (P ∗), then for all(
T1, . . . , Tp

) ∈ ∂g1 (x̄) × · · · × ∂gp (x̄) there exist
(
α∗

1 , . . . , α
∗
p

) ∈ R
p
+ \ {0} and

z∗ ∈ (−Z+)◦ such that 〈z∗, h (x)〉=0 and

p∑
i=1

φi (x)α∗
i Ti ∈ ∂

(
p∑

i=1

α∗
i fi

)
(x)− ∂

(
z∗ ◦h

)
(x) .

Proof. Let
(
T1, . . . , Tp

)∈ ∂g1 (x̄)×· · ·× ∂gp (x̄). Applying Lemma 4.1 and
Theorem 3.3, there exist

(
α∗

1 , . . . , α
∗
p

)∈ R
p
+ \ {0} and z∗ ∈ (−Z+)◦ such that

〈z∗, h (x)〉=0 and

p∑
i=1

φi (x)α∗
i Ti ∈ ∂

(
p∑

i=1

α∗
i fi

)
(x)−N (S, x̄) . (4.1)
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Using Lemma 4.2,

δS̄ = δ−Z+ ◦h.

Since N (S, x̄)=N
(
S̄, x̄

)
, one obtains

N (S, x̄)= ∂δS̄ (x̄)= ∂ (δ−Z+ ◦h) (x̄) . (4.2)

Combining (2.1) , (4.1) and (4.2), we get the result.

THEOREM 4.4. Suppose that f, g:X → Y ∪ {+∞} are convex, proper and
lower semicontinuous, S is a nonempty open convex subset of X and x̄ ∈domf ∩
domg is a boundary point of S. Suppose also that there exists

(
α∗

1 , . . . , α
∗
p

)∈
R

p
+ \ {0} such that for any z∗ ∈ (−Z+)◦ one has 〈z∗, h (x)〉=0 and

∂ε

(
p∑

i=1

φi (x)α∗
i gi

)
(x)+ ∂

(
z∗ ◦h

)
(x̄)⊂ ∂ε

(
p∑

i=1

α∗
i fi

)
(x) for all ε >0.

(4.3)

Then, x is a weak minimal solution of (P ∗).

Proof. As previously,

NS (x)= ∂δS (x)= ∂ (δ−Z+ ◦h) (x)= ∪
z∗∈(−Z+)◦

〈z∗,h(x̄)〉=0

∂
(
z∗ ◦h

)
(x̄) .

Consequently, from inclusion (4.3), one has

∂ε

(
p∑

i=1

φi (x)α∗
i gi

)
(x)+NS (x)⊂ ∂ε

(
p∑

i=1

α∗
i fi

)
(x) for all ε >0.

Finally, applying Theorem 3.4, we finish the proof.

EXAMPLE 4.1. Let f and g: R→R be given functionals with

f (x)=|x| and g (x)= 1
2
x2.

We consider h: R→R defined by

h (x)=
{

x if x >0
0 if x �0.

In this case, ∂εg (0)={0} , ∂εf (0)= [−1− ε,1+ ε] and ∂h (0)= [0,1]. Under
these assumptions, we remark that (4.3) is satisfied.
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25. Rockafellar, R.T. (1969), Convex Analysis, Princeton University Press, New Jersey.
26. Rockafellar, R.T. (1980), Generalized directional derivatives ans subgradients of non-

convex functions, Canadian Journal of Mathematical, 32, 175–180.
27. Tao, P.D. and Hoai An, L.T. (1997), Convex analysis approach to D. C. programming:

Theory, algorithms and applications, Acta Mathematica Vietnamica, 22, 289–355.
28. Tao, P.D. and Souad, E.B. (1988), Duality in D.C. optimization. Subgradient methods,

Trends in mathematical optimization, Internat. Ser. Numer. Math. 84(c), Birkhauser Ver-
lag, Bassel, pp. 277–293.

29. Thach, P.T. (1993), Global optimality criterions and duality with zero gap in nonconvex
optimization problems, SIAM Journal of Mathematical Analaysis, 24, 1537–1556.

30. Tuy, H. (1995), D.C. Optimization: Theory, Methods and Algorithms, Handbook of Global
Optimization, Kluwer Academic Publishers, Norwell, MA, pp. 149–216.

31. Tuy, H. and Oettly, W. (1994), On necessary and sufficient conditions for global opti-
mality, Revista de Mathématicas Aplicadas, 15, 39–41.
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